A Bayesian approach to fusing uncertain, imprecise and conflicting information
نویسنده
چکیده
The Dezert–Smarandache theory (DSmT) and transferable belief model (TBM) both address concerns with the Bayesian methodology as applied to applications involving the fusion of uncertain, imprecise and conflicting information. In this paper, we revisit these concerns regarding the Bayesian methodology in the light of recent developments in the context of the DSmT and TBM. We show that, by exploiting recent advances in the Bayesian research arena, one can devise and analyse Bayesian models that have the same emergent properties as DSmT and TBM. Specifically, we define Bayesian models that articulate uncertainty over the value of probabilities (including multimodal distributions that result from conflicting information) and we use a minimum expected cost criterion to facilitate making decisions that involve hypotheses that are not mutually exclusive. We outline our motivation for using the Bayesian methodology and also show that the DSmT and TBM models are computationally expedient approaches to achieving the same endpoint. Our aim is to provide a conduit between these two communities such that an objective view can be shared by advocates of all the techniques. 2007 Elsevier B.V. All rights reserved.
منابع مشابه
Using Fuzzy LR Numbers in Bayesian Text Classifier for Classifying Persian Text Documents
Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...
متن کاملUsing Fuzzy LR Numbers in Bayesian Text Classifier for Classifying Persian Text Documents
Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...
متن کاملIterative Bayesian Estimation of Travel Times on Urban Arterials: Fusing Loop Detector and Probe Vehicle Data
On urban arterials, travel time estimation is challenging especially from various data sources. Typically, fusing loop detector data and probe vehicle data to estimate travel time is a troublesome issue while considering the data issue of uncertain, imprecise and even conflicting. In this paper, we propose an improved data fusing methodology for link travel time estimation. Link travel times ar...
متن کاملAn Introduction to the DSm Theory for the Combination of Paradoxical, Uncertain, and Imprecise Sources of Information
Abstract – The management and combination of uncertain, imprecise, fuzzy and even paradoxical or high conflicting sources of information has always been, and still remains today, of primal importance for the development of reliable modern information systems involving artificial reasoning. In this introduction, we present a survey of our recent theory of plausible and paradoxical reasoning, kno...
متن کاملDecision support under uncertainties based on robust Bayesian networks in reverse logistics management
One of the major challenges for product lifecycle management systems is the lack of integrated decision support tools to help decision-making with available information in collaborative enterprise networks. Uncertainties are inherent in such networks due to lack of perfect knowledge or conflicting information. In this paper, a robust decision support approach based on imprecise probabilities is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Information Fusion
دوره 9 شماره
صفحات -
تاریخ انتشار 2008